If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-24x-12=0
a = 15; b = -24; c = -12;
Δ = b2-4ac
Δ = -242-4·15·(-12)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-36}{2*15}=\frac{-12}{30} =-2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+36}{2*15}=\frac{60}{30} =2 $
| -15x^2-24x-12=0 | | N+9=4x5 | | x*1.25=250000 | | 5x6=2x | | 6-n=0 | | x^2-4x-21/14-2x=0 | | x+-6=-9 | | 2^8x+3=7^4x-11 | | -3y-1=2 | | 0.8^x=0.4 | | -7=-5-r | | 18-4m=-10-4m | | x+x/70+x=180 | | 8/17=y/4 | | 15x^2-80=20x+5x^2 | | 5=g+0 | | -9=1/2x+3 | | -2-f=2 | | 1=-5-j | | -7-v=1 | | 3-w=-6 | | 22-4=6e | | 6(y-5)-8y=-34 | | c+-3=3 | | 4^x=4.2 | | 4^x=41/5 | | 2h×3=0 | | 3x/4=7/12 | | -6-i=-3 | | o+-6=-12 | | -7=-6-u | | 5(3)+x0.25=15 |